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Figure 1: Success rate metrics (TCR and PSR) and single-step infer-
ence times when using different horizon parameters H .

1 Studies on H and Computational Efficiency1

Considering that RSSM-based MPFP inevitably introduces2

additional computational cost, we investigate performance3

boosts induced by different dynamic imagination horizons4

H . Accordingly, we also report the computational efficiency.5

Fig. 1 illustrates the trend of the success rate metrics (TCR6

and PSR) and the single-step inference time with respect to7

different horizons H . By weighing MM performance and8

computational cost, we find that H = 8 is optimal. Setting9

H = 8 allows our MM policy to make decisions at a fre-10

quency of ∼58 Hz. The single-step inference times are mea-11

sured on a computer with an NVIDIA GeForcw RTX 309012

graphics card and an AMD® Ryzen 9 9900x CPU with 1213

physical cores and 24 logical cores.14

2 Sim-to-Real Experiments15

We deploy our method to a real robotic platform consisting of16

a Husky A2001 mobile base and a UR5 manipulator2 to verify17

its practicality. The robot’s upper computer is a laptop with an18

Intel Core i9-13900HX CPU and GeForce RTX 4060 GPU.19

The robot uses a RealSense D435 RGB-D camera and YOLO20

V7 to identify target objects. We use ROS3 to organize the21

hardware and software resources of the robotic system. Con-22

sidering the security, we set the maximum speed and decision23

∗Corresponding Authors.
1https://wiki.ros.org/Robots/Husky
2https://github.com/ros-industrial/universal robot
3https://wiki.ros.org/

frequency of the mobile base to 0.3 m/s and 1 Hz, respec- 24

tively. Our real-world robotics experiment considers the wa- 25

ter delivery task of grabbing a water bottle and delivering it 26

to a specified goal position, the process of which is shown in 27

Fig. 2. Notably, our MM policy allows to accomplish this 28

task efficiently in a vehicle-arm synergistic manner, instead 29

of performing navigation and stationary manipulation sepa- 30

rately. The sim-to-real experiment demonstrates the practi- 31

cality of our approach. Please see our attached video for a 32

more intuitive MM process. 33

3 More Experimental Configurations and 34

Visualizations 35

The home-scene-oriented, warehouse-oriented, and dynamic- 36

scene-oriented experimental configurations are shown in Fig. 37

3, Fig. 4, and Fig. 5, respectively. In addition, these fig- 38

ures also illustrate the trend of TCR metrics with the num- 39

ber of training episodes in different experimental configura- 40

tions, respectively. These curves reflect the superior sample 41

efficiency and MM performance of our method compared to 42

strong baselines including N2M2 [Honerkamp et al., 2023], 43

Dreamer V3-base MM policy [Hafner et al., 2025], and TD- 44

MPC2-based MM policy [Hansen et al., 2024]. 45
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Figure 2: (a) Identify and locate the goal position. (b) Detect and locate the water bottle using the YOLO V7 algorithm. (c) Move the robotic
arm to grab the water bottle. (d) Begin to deliver the water bottle in a vehicle-arm synergistic manner. (e) The robotic arm and mobile base
move together for efficiency, not just moving the base. (f) The water bottle is delivered to the specified goal position. Please see our attached
video for a more intuitive MM process.
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Figure 3: (Left) An illustration of the home-scene-oriented MM task. In each episode, the positions of the robot, the picking point (Goal1),
and the placing point (Goal2) are randomly initialized. The layout of static obstacles in the environment is invariant. This task requires the
robot to pick up an object at Goal1 and then place the object at Goal2. (Right) TCR metrics change with the number of training episodes in
the scene-oriented experimental configuration.



Warehouse MM Task
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Figure 4: (Left) An illustration of the warehouse-oriented MM task. In each episode, the positions of the robot, the picking point (Goal1),
and the placing point (Goal2) are randomly initialized. The layout of static obstacles in the environment is invariant. This task requires the
robot to pick up an object at Goal1 and then place the object at Goal2. (Right) TCR metrics change with the number of training episodes in
the warehouse-oriented experimental configuration.

Dynamic MM Task
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Figure 5: (Left) An illustration of the dynamic-scene-oriented MM task. In each episode, the positions of the robot, the picking point (Goal1),
and the placing point (Goal2) are randomly initialized. A number of free-moving cubic objects are randomly initialized in the scene. This task
requires the robot to pick up an object at Goal1 and then place the object at Goal2 while avoiding dynamic obstacles. (Right) TCR metrics
change with the number of training episodes in the dynamic-scene-oriented experimental configuration.
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